

مجلة جامعة القدس المفتوحة للبحوث الإدارية والاقتصادية

اسم المقال: استخدام منهجية بوكس - جينكينز للتنبؤ بالتدفقات النقدية في البنوك الفلسطينية: "دراسة حالة بنك فلسطين"

اسم الكاتب: د. مروان درويش

رابط ثابت: https://political-encyclopedia.org/library/1708

2025/05/05 16:32 +03 تاريخ الاسترداد:

الموسوعة السياسيّة هي مبادرة أكاديمية غير هادفة للربح، تساعد الباحثين والطلاب على الوصول واستخدام وبناء مجموعات أوسع من المحتوى العربي في مجال علم السياسة واستخدامها في الأرشيف الرقمي الموثوق به لإغناء المحتوى العربي على الإنترنت. لمزيد من المعلومات حول الموسوعة السياسيّة - Encyclopedia Political، يرجى التواصل على info@political-encyclopedia.org

استخدامكم لأرشيف مكتبة الموسوعة السياسيَّة - Encyclopedia Political يعني موافقتك على شروط وأحكام الاستخدام المتاحة على الموقع https://political-encyclopedia.org/terms-of-use

استخدام منهجية بوكس – جينكينز للتنبؤ بالتدفقات النقدية في البنوك الفلسطينية: "دراسة حالة بنك فلسطين" *

د. مروان درویش **

DOI: https://doi.org/10.5281/zenodo.1405435

^{*} تاريخ الاستلام: 13/ 2/ 2018م، تاريخ القبول: 1/ 4/ 2018م. ** أستاذ مشارك/ جامعة القدس المفتوحة/ فلسطين.

ملخص:

هدفت هذه الدراسة إلى استخدام منهجية بوكس جينكينز لتحديد أفضل السبل والطرق في التنبؤ بالتدفقات النقدية المستقبلية للمصارف الفلسطينية، وذلك بالاعتماد على قاعدة بيانات نصف سنوية لبنك فلسطين كحالة ممثلة للبنوك الفلسطينية، خلال الفترة كل 2000 الى 6/ 2017، ولعل من أهم النتائج التي تم التوصل إليها أن نموذج الانحدار الذاتي من الدرجة الاولى (1) AR لديه قدرة للتنبؤ بالتدفقات النقدية المستقبلية من أنشطة التشغيل، ونموذج الانحدار الذاتي والمتوسط المتحرك من الدرجة الاولى (1,1) ARMA لديه قدرة للتنبؤ بالتدفقات النقدية المستقبلية من جميع الأنشطة، وهذا يؤكد صلاحية استخدام منهجية بوكس جينكينز للتنبؤ بالتدفقات النقدية المستقبلية، ولذلك يوصي الباحث باستخدامها عند التنبؤ بالتدفقات النقدية المستقبلية المختلفة.

الكلمات المفتاحية: التنبؤ، التدفقات النقدية، منهجية بوكس حينكينز، بنك فلسطين

Utilizing Box - Jenkins Methodology to Determine the Best Appraoch and Mean for Forecasting Cash Flows at the Palestinian Banks

Abstract

This study aimed at using the Box - Jenkins methodology to determine the best appraoch and means for forecasting cash flows at the Palestinian banks. The study analyzed a semi - annual database operated by Bank of Palestine as a case study during the period of Jun 2000 to Jun 2017. The study concluded that the first autoreggresive model (AR (1)) has the potential to predict future cash flows from operating activities, and the first autoreggresive moving average model (ARMA (1. 1)) has the ability to predict future cash flows from all the activities. This confirms the validity of using Box - Jenkins methodology to predict the future cash flows at Palestinian banks. Therefore, the researcher recommends using ARMA model for forecasting the future cash flows and determining cash liquidity of the different economic units.

Keywords: Forecasting, Cash Flows, Box - Jenkins Methodology, Bank of Palestine

المقدمة

تتضمن القوائم المالية كماً كبيراً من البيانات المالية الخاصة بالفترات المالية السابقة والفترة المالية الحالية، لذلك لا يكفي إعداد هذه القوائم وإنما يجب تحليلها باستخدام الأساليب والأدوات المناسبة لتحويل تلك البيانات إلى معلومات مفيدة عن أداء المنشأة في الماضي إضافة إلى التنبؤ بمستقبلها، ثم تفسير نتائج التحليل لخدمة كافة الأطراف المستخدمة للبيانات المحاسبية. (الخلايلة، 2004، ص 37).

وتعتبر قائمة التدفقات النقدية حلقة الوصل بين قائمتي الدخل والميزانية العمومية، حيث توفر معلومات لا تظهرها هاتين القائمتين، وهي الأكثر ملاءمة لتحديد نقاط القوة والضعف في نشاط المنشاة.حيث تفيد قائمة التدفقات النقدية في تقييم جودة ونوعية أرباح الشركة، وتقييم السيولة في المنشأة و سياسات التمويل، والتنبؤ بالتدفقات النقدية المستقبلية (مطر، 2006، ص161).

ومن هنا فقد حظيت قائمة التدفقات النقدية باهتمام واسع من قبل الهيئات واللجان المهنية المنظمة للمعايير المحاسبية وكذلك من الباحثين أيضاً، نظراً لاهمية المعلومات الاضافية التي توفرها هذه القائمة سواء في تقييم الأداء، أو في اتخاذ القرار، أو في القدرة على التنبؤ بالتدفقات النقدية المستقبلية.

و تستخدم العديد من الطرق في بناء نماذج التنبؤ، وتعد أساليب تحليل السلاسل الزمنية من أكثر هذه الطرق استخداما، وبما أن التنبؤ العلمي هو تنبؤ نسبي، فلا يمكن الزعم بدقته الكاملة بل هو مقرون بدرجة دقة التنبؤ، ومدى التزام المحللين بالمنهجيات السليمة وفقا لخلفياتهم الاكاديمية وخبراتهم العملية.حيث استخدم الباحثون العديد من النماذج للتنبؤ بالسلاسل الزمنية المستقبلية، من بين هذه النماذج نموذج بوكس جينكينز (Jenkins Model) – الذي أثبت كفاءته في العديد من الدراسات ومنها دراسة الغنام (2003).

وانسجاما مع ما سبق تأتي هذه الدراسة للبحث في إمكانية استخدام منهجية بوكس جينكينز للتنبؤ بالتدفقات النقدية المستقبلية للبنوك الفلسطينية من خلال تطبيقها على بنك فلسطين كحالة ممثلة للبنوك الفلسطينية كافة.

مشكلة الدراسة وأسئلتها

تنشأ مشكلة الدراسة في ضرورة الحصول على معلومات تتعلق بالتدفق النقدي المستقبلي، إذ أشار المعيار المحاسبي الدولي رقم (1) بأن الهدف من عرض البيانات المالية هو مساعدة المستخدمين في التنبؤ بالتدفقات النقدية المستقبلية والتوقيت لتلك التدفقات) جمعية المجمع العربي للمحاسبين القانونيين، 2006).

وتتأثر عملية التنبؤ في السلاسل الزمنية بشكل مباشر باختيار النموذج المناسب لبيانات السلسلة الزمنية حيث تؤثر هذه الخطوة ثأتيرا مباشرا في دقة التنبؤات المتحصل عليها، ولكي نحصل على نماذج تنبؤ لبيانات السلاسل الزمنية يكون لها المقدرة على تصوير الواقع بدقة عالية في التنبؤات المستقبلية، يجب أن تأخذ هذه النماذج كل الاعتبارات المتعلقة بالبيانات من خطية وغير خطية، ونوعية البيانات، و التأثيرات المختلفة، وغيرها من العوامل الأخرى المتعلقة بالبيانات.

ونظرا لقلة الدراسات والبحوث العربية التي تناولت التنبؤ بالتدفقات النقدية المستقبلية باستخدام أساليب التنبؤ الحديثة ومنها نموذج بوكس جينكينز، جاءت مشكلة الدراسة لتتمحور حول السؤال الرئيس التالي:

ما مدى صلاحية نموذج بوكس جينكينز للتنبؤ بالتدفقات النقدية المستقبلية للبنوك الفلسطينية؟ وهل تختلف نتائج

النموذج باختلاف البيانات المستخدمة؟

فرضيات الدراسة

بناءً على سؤال الدراسة المطروح تم وضع الفرضيات التالية:

- لا يصلح نموذج بوكس جينكينز (ARIMA) للتنبؤ
 بالتدفقات النقدية المستقبلية للبنوك الفلسطينية
- لا توجد فروق ذات دلالة احصائية بين النماذج التي نحصل عليها من التدفق النقدي من التشغيل والنماذج التي نحصل عليها من التدفق النقدي من جميع الأنشطة.

متغيرات الدراسة

حسب منهجية بوكس جبنكينز تتكون متغيرات الدراسة من:

المتغير التابع

يتمثل المتغير التابع للدراسة في التدفق النقدي من أنشطة التشغيل والتدفق النقدي من جميع الأنشطة لسلسلة نصف سنوية خلال الفترة 6/ 2000 – 6/ 2017.

- المتغيرات المستقلة
- الانحدار الذاتي Autoregressive ويرمز له بالرمز
 AR (t 1) حيث يعبر عن القيمة السابقة للتدفق النقدي من أنشطة التشغيل والتدفق النقدي من جميع الأنشطة لعدد معين من الفترات.
- المتوسط المتحرك Moving average ويرمز له بالرمز
 (t 1) AM حيث يعبر عن القيم السابقة للخطأ العشوائي.

أهمية الدراسة

تنبع أهمية الدراسة من كونها تعالج موضوعا على قدر من الأهمية، ألا وهو التنبؤ بالتدفقات النقدية المستقبلية، وفي قطاع يعتبر من أهم القطاعات الاقتصادية التي تمثل شريان التمويل الرئيس للاقتصاد الفلسطيني وهو قطاع البنوك، حيث يتوقع أن تساعد نتائجها مستخدمي المعلومات في تحديد أفضل أنموذج في التنبؤ بالتدفقات النقدية المستقبلية وبالتالي تحقيق مختلف أهدافهم، بالإضافة إلى توفير معلومات عن التدفق النقدي بالشكل الذي يمكن ادارة البنوك من اتخاذ القرارات المناسبة خاصة ان توفر النقد في الوقت المناسب، مما يساعد البنوك في القيام بمهامها وبالتالي تحقيق أهدافها بسهولة ويسر، كما أنه سوف يساعد المستثمرين على تقييم استثماراتهم بالشكل الصحيح.

من جهة أخرى تنبع أهمية الدراسة في طريقة تناولها للموضوع، فمعظم الدراسات السابقة التي تمت في البيئة العربية والفلسطينية تناولته من خلال التنبؤ باستخدام الارباح المحاسبية وفق منهجيات مختلفة، فيما تستخدم هذه الدراسة منهجية بوكس جينكينز التي ثبتت كفاءتها للتنبؤ عند استخدامها في الدراسات العملية، حيث استخدمت هذه المنهجية للتنبؤ في دراسات عديدة تمت في الاسواق المالية المتطورة، بينما قلت الدراسات التي تناولت هذا الموضوع في الأسواق الناشئة، فيما ندرت تلك الدراسات في البيئة الفلسطينية، على حد علم الباحث، لذا فإن قلة الدراسات التي تناوات الموضوع وفق المنهجية المذكورة تعطي أهمية لهذه الدراسة، وتجعلها مدخلا للمزيد من الدراسات في هذا المجال.

أهداف الدراسة

تركز الدراسة على محاولة وضع نموذج للتنبؤ بالتدفقات النقدية المستقبلية، وذلك بالاعتماد على منهجية بوكس جينكينز، حيث تسعى إلى تحقيق الأهداف التالية:

- دراسة وتحليل سلوك التدفقات النقدية للبنوك الفلسطينية (بنك فلسطين كحالة) كسلسلة زمنية نصف سنوية خلال فترة الدراسة.
- محاولة وضع نموذج كمي يساعد على التنبؤ بالتدفقات النقدية المستقبلية للبنوك الفلسطينية باستخدام منهجية بوكس جينكينز للتنبؤ.
- المقارنة بين نماذج التنبؤ التي نحصل عليها من التدفق النقدي من أنشطة التشغيل والنماذج التي نحصل عليها من التدفق النقدى من جميع الأنشطة.

الإطار النظري

▶ التنبؤ المالى:

يعد التنبؤ المالي أحد أهم التقنيات التي يعتمد عليها المستثمرون في بناء قراراتهم الاستثمارية، وقد اعتمدت الأدبيات المالية بدرجة كبيرة على التنبؤ بالأحداث المستقبلية لما له من أهمية استثنائية في العمل المالي والذي يتقرر من بعده الربح أو الخسارة، و لما كان المتعاملون بالمال تواقين للربح وتعظيمه فإنهم قد كرسوا البحث في التنبؤ بوصفه يوفر الأدوات اللازمة لتحقيق ذلك.

وقد صيغت عدة مفاهيم للتنبؤ من طرف العديد من المفكرين والباحثين فاعتبره البعض "مجموعة من الإجراءات والطرق الذاتية والموضوعية المصممة أساسا لغرض التوقع بالاحداث المستقبلية ومعرفة النتائج التي ستتحقق" (Curly & Bear, 1979, p275)، فيما اعتبره اخرون "مجموعة التقديرات والقياسات التي يضعها الفرد أو المؤسسة والمتعلقة بالاحداث والظروف المستقبلية، بهدف الاعداد لمواجهة الظروف التي توقعها، وذلك عن طريق الخطط السياسات اللازمة للتعامل مع هذه الظروف"، -1982Fort, p5 1982Fort, أما «عملية توقع ما سيحدث في المستقبل والاعتماد على تلك النتائج سواء كانت ايجابية أم سلبية» (Nugus, من أدوات الرقابة على أي تطور أو تغيير من الممكن أن يطرأ في المستقبل من خلال تحديد هذه التغيرات وتقديرها ومعرفة إمكانية حدوثها والتكيف معها"

ومن التعريفات السابقة يمكن أن يكون للتنبؤ الدور الكبير في توفير النتائج الضرورية التي تتم على أساسها عملية التقييم، واتخاذ القرار الملائم وبالشكل الذي يقلل من إمكانية تحقق الانحرافات بين ماهو فعلي وما هو متوقع وبالشكل الذي يساعد في عملية ترشيد القرارات.

وتبدأ عملية التنبؤ المالي بتحديد الهدف من عملية التنبؤ، ثم تطوير نموذج التنبؤ، وفحص وتقييم النموذج قبل التطبيق ثم تطبيق النموذج، وتنتهي العملية بتقييم النموذج بعد التطبيق

لمعرفة دقة النتائج. (ابو الفتوح، 1996)

وللتنبؤ أهمية بالغة في عملية التخطيط واتخاذ القرارات في المجالات كافة، وعن طريق التنبؤ نستطيع التعرف على الظروف والحالات المحيطة بالمشكلة قيد الدراسة قبل اتخاذ أي قرار، لذا فإن موضوع التنبؤ لاقى ويلاقي اهتماما متزايدا من قبل الباحثين وأصحاب اتخاذ القرار (الهباش، 2006، ص61). فمنذ مطلع العقد السابع من القرن العشرين ظهر اهتمام متزايد بتحليل السلاسل الزمنية وطرق التنبؤ بقيمها المستقبلية، وفي بداية الثمانينات من نفس القرن ظهر اهتمام خاص بتحليل السلاسل الزمنية غير الخطية ونمذجتها، ومع بداية العقد الاخير من القرن العشرين ظهرت توجهات لدراسة خصائص السلاسل الزمنية، ومع إطلالة القرن الحادي والعشرين تزايدت الاهتمامات بدراسة السلاسل الزمنية من خلال علاقتها الوثيقة بالزمن. (EL Souda, 2000)

◄ التدفقات النقدية

تبين قائمة التدفقات النقدية قدرة الشركة على إدارة تدفقاتها النقدية، فإذا كان رصيد النقدية في آخر المدة عال وأكبر من الالتزامات المتداولة بكثير، ربما يشير ذلك إلى قصور في إدارة النقدية وعدم استغلال النقد في استثمارات قصيرة الأجل.وعلى العكس من ذلك إذا كان هذا الرصيد أقل بكثير من التزاماتها المتداولة فهذا ربما يشير إلى تدني مستوى سيولة الشركة.(الهباش، 2006)

وتنبع أهمية قائمة التدفق النقدي من دورها في توفير معلومات لا تظهر في أي من قائمة الدخل والميزانية العمومية. لذا تعتبر هذه القائمة بمثابة صلة الوصل بين هاتين القائمتين، كما أنها أكثر ملاءمة منهما لتحديد نقاط القوة والضعف في نشاط المنشأة، بما تحتويه من معلومات وما يمكن اشتقاقه منها من مؤشرات كمية فعالة لتقييم مدى كفاءة السياسات التي تتبناها الإدارة في مجال التمويل والاستثمار، وإمكانية التنبؤ المستقبلي في التوسع.(المعايير الدولية لإعداد التقارير المالية، 2006، ص 766). وتتضمن القائمة: التدفقات النقدية الداخلة والتدفقات النقدية الخارجة، ضمن ثلاثة أنشطة رئيسية هي الأنشطة التشغيلية والأنشطة الاستثمارية والأنشطة التمويلية: (Palepu et.al., 2004, p15)

■ التدفقات النقدية الناتجة عن الأنشطة التشغيلية وتشمل كافة العمليات والأحداث بخلاف الأنشطة الاستثمارية والتمويلية. وتتمثل التدفقات النقدية الداخلة من الأنشطة التشغيلية في المتحصلات من المبيعات النقدية والمتحصلات من العملاء، والفوائد الدائنة المحصلة نتيجة الاقراض للغير، والتوزيعات المحصلة نقدا عن استثمارات في اوراق مالية، والمتحصلات النقدية من الدعاوى القانونية، والمتحصلات من اقساط التأمين المستردة وأي مقبوضات نقدية اخرى بخلاف ما يعتبر استثماريا أو تمويليا. عن السلع والخدمات، والفوائد المدينة المدفوعات النقدية للموردين عن السلع والخدمات، والفوائد المدينة المدفوعة باستثناء الفوائد المدينة المرسلة، ومدفوعات أجور ومرتبات العاملين، والمدفوعات النقدية لجهات حكومية كالضرائب والجمارك والغرامات والأتعاب، وأي مدفوعات نقدية اخرى بخلاف ما يعتبر استثماريا أو تمويليا.

- التدفقات النقدية الناتجة عن الأنشطة الاستثمارية تشمل الأنشطة الاستثمارية التي تحصل الوحدة من خلالها على منح مالية، والمتحصلات من استرداد القروض الممنوحة للغير، والمتحصلات من بيع الاستثمارات في الاوراق المالية، أو أي أصول أخرى، بخلاف المخزون.وتشمل التدفقات النقدية الخارجة المدفوعات النقدية منح قروض للغير، والمدفوعات النقدية لشراء اوراق مالية، والمدفوعات النقدية للحصول على اصول طويلة الاجل التي تتعلق بتسهيل نشاط الوحدة وليس بغرض اعادة بيعها.
- التدفقات النقدية الناتجة عن الأنشطة التمويلية وتشمل المتحصلات النقدية من الملاك (اصدار الاسهم) والمتحصلات نتيجة الحصول على قروض (أو اصدار سندات)، أما التدفقات النقدية الخارجة الناتجة عن الأنشطة التمويلية تشمل المدفوعات النقدية نتيجة تخفيض اسهم رأس المال، وكذلك المدفوعات النقدية نتيجة سداد القروض بالاضافة الى المدفوعات كتوزيعات الارباح على المساهمين.

◄ تنبؤات التدفقات النقدية

تختلف وجهات النظر في طريقة التنبؤ بالتدفقات النقدية المستقبلة ومنها ما تعتمد على بيانات التدفقات النقدية التاريخية وذلك لأنها ذات علاقة وثيقة بالتدفقات النقدية المستقبلة، كما أن تقدير التدفقات النقدية المستقبلة تقتضي معرفة التدفقات النقدية الماضية كنقطة بداية.

ويعد التنبؤ أحد أهم مهام وأدوات ادارة النقدية، ويهدف إلى الإدارة الأمثل لتذبذب السيولة في الأجل القصير لضمان كفاية النقدية والحفاظ على استمرارية النشاط، فكفاءة التنبؤ بالتدفق النقدي تجعل المؤسسة مستعدة لمواجهة الظواهر والأحداث والنتائج المالية المستقبلية، وهي وظيفة مهمة للحفاظ على استقرار المؤسسة في الأجل القصير وبقاءها في الأجل الطويل.(قويدري، 2016)

وحتى يكون التنبؤ بالتدفقات النقدية المستقبلة مبنيا على أسس منطقية وبعيدة عن الحدس والتخمين والتقدير الشخصي فيجب وضع ضوابط لعملية التنبؤ، ويتمثل ذلك فيما يلى: (Palepu et.al., 2004, pp15 - 25)

- يجب اعداد التنبؤات للتدفقات النقدية المستقبلة باستخدام المبادىء المحاسبية المتوقع أن تستخدم عندما تتواجد الاحداث والعمليات المرتبطة بهذا التنبؤ.
- عند اعداد المعلومات المستخدمة في التنبؤ بالتدفقات النقدية يجب أن تتوافر عناية معقولة من قبل اشخاص مؤهلين علمياً وفنياً في المجالات المختلفة كالتسويق والاستثمار والتمويل، كما يجب ان تتوافر فيهم الخبرات الفنية في مجال بحوث العمليات والهندسة والمجالات الفنية الاخرى المناسبة.
- يجب أن يوفر نظام التنبؤ بالتدفقات النقدية التوثيق الكافي لكل من التنبؤ واجراءات هذا التنبؤ، ويتضمن هذا التوثيق تسجيل القروض المحددة والدلائل المؤيدة لهذا التنبؤ، بالإضافة الى المقارنة المنتظمة مع النتائج المحققة، وهذه المقارنة المنتظمة يمكن أن توفر مقياسا تاريخيا لنجاح التنبؤ بالتدفقات النقدية، وبالتالي يعتبر ذلك مؤشرا على امكانية الاعتماد المنتظر على التنبؤات المستقبلة، وكأساس لتحسين طرق ومناهج التنبؤ.

■ حتى يمكن التأكد من أن عملية التنبؤ بالتدفقات النقدية المستقبلة سليمة يجب مراجعة طرق اعداد هذه التنبؤات للتأكد من أنه أعدت طبقا للمبادىء المحاسبية والسياسات الادارية داخل الشركة، ولذلك يجب أن تحوز هذه التنبؤات على موافقة المستويات الادارية حتى يمكن تحقيقها.

ونظراً لأهمية التدفقات النقدية فقد أصبحت عملية التنبؤ بها وتقديرها محل اهتمام إدارات البنوك لاستخدامها في التخطيط وإعداد الموازنات النقدية وتوفير المعلومات اللازمة لترشيد القرارات الاستثمارية والتمويلية، والاستفادة منها في التنبؤ بالتدفقات النقدية المستقبلية، وذلك من خلال تطوير نموذج يساعد على التنبؤ بالتدفقات النقدية لايجاد تفسير للسياسات البنكية المستخدمة من قبل الادارة. (الهباش، 2006، ص3)

الدراسات السابقة

تناول العديد من الباحثين موضوع التنبؤ بالتدفقات النقدية من جوانب مختلفة لأهميتها في اتخاذ القرارات من قبل المستخدمين، كما حفلت الدوريات العربية والأجنبية منذ عقد التسعينيات من القرن السابق بالعديد من الدراسات والأبحاث التي أكدت على أهمية التنبؤ بشكل عام والتنبؤ بالتدفقات النقدية بشكل خاص، وفيما يلي عرض موجز لأهم الدراسات والأبحاث ذات الصلة بموضوع الدراسة حيث تم استعراض الدراسات التي بحثت في التنبؤ بالتدفقات النقدية في البنوك، ثم الدراسات التي استخدمت منهجية بوكس جينكينز للتنبؤ بالتدفقات النقدية في القطاعات المختلفة، وذلك حسب التسلسل التاريخي للدراسات:

حيث قامت دراسة (الوشلي، 2002) على قياس العلاقة بين مقاييس التدفقات النقدية ومقاييس الأرباح المحاسبية، وتقييم قدرتها التنبؤية بحجم التدفقات النقدية.وقد اشتملت على أربعة عشر مصرفا مدرجا في بورصة عمان للأوراق المالية، خلال الفترة من عام 1993 إلى عام 2000، وتوصلت الدراسة إلى وجود علاقة معنوية ذات دلالة إحصائية بين مقاييس التدفقات النقدية ومقاييس الأرباح المحاسبية.

وهدفت دراسة (الهباش، 2006) إلى اختبار العلاقة بين مقاييس التدفقات النقدية والعوائد المحاسبية، وتحديد أكثر تلك المقاييس قدرة وأفضلها في التنبؤ بالتدفقات النقدية المستقبلية، بالإضافة إلى تقييم القدرة التنبؤية لتلك المقاييس في التنبؤ بالتدفقات النقدية سواء على مستوى إجمالي المصارف أو على مستوى كل مصرف على حدة، وذلك بالتطبيق على عينة تمثلت في سبعة مصارف فلسطينية للفترة 1997 – 2004، باستخدام الإنحدار الخطي البسيط والمتعدد، حيث توصلت الدراسة إلى أن القدرة التنبؤية لمقاييس التدفقات النقدية أفضل من مقاييس العوائد المحاسبية من حيث الأهمية سواء على مستوى المصرف الواحد أم على مستوى المصارف مجتمعة، عند التنبؤ بالتدفقات النقدية المستقبلية.

كما هدفت دراسة (التميمي وعبد الرازق، 2015) إلى التنبؤ بالتدفقات النقدية المستقبلية باستخدام مقاييس التدفق النقدي والعائد المحاسبي بالتطبيق على عدد من المصارف العراقية للسنوات 2008 - 2013، وتقييم القدرة التنبؤية لمؤشر التدفق

النقدي بمقاييسه المختلفة والمتمثلة بمقياس التدفقات النقدية من الأنشطة التشغيلية، ومقياس التدفقات النقدية من الأنشطة الاستثمارية والتمويلية، ومقياس صافي التدفقات النقدية، بالاضافة إلى مؤشر العائد المحاسبي والمتمثل بدخل النشاط التشغيلي للتنبؤ بالتدفقات النقدية المستقبلية، وتحديد أكثرها قدرة على التنبؤ، حيث توصلت الدراسة إلى أن كلاً من مؤشري التدفقات النقدي والعائد المحاسبي أثبتا قدرتهما على التنبؤ بالتدفقات النقدية المستقبلية في ظل البيئة العراقية، كما أظهرت نتائج التطبيق العملي أن التدفقات النقدية (وبالتحديد التدفقات النقدية من الأنشطة الاستثمارية والتمويلية) أفضل من الأرباح المحاسبية في التنبؤ بالتدفقات النقدية.

من ناحية أخرى تعددت استخدامات منهجية بوكس - جينكينز في التنبؤ، حيث هدفت دراسة (الغنام، 2003) إلى تحليل السلاسل الزمنية لمؤشر أسعار الأسهم في المممكة العربية السعودية بين عامي 1998 و 2001، من أجل بناء نموذج للتنبؤ باستخدام منهجية بوكس جنكينز، وباستخدام الفروق الأولى توصلت الدراسة إلى أن النموذج الأفضل للتنبؤ ببيانات المؤشر العام للسوق هو نموذج الانحدار الذاتي من الدرجة الأولى (1) AR بدون اي تأثيرات مه سمدة.

واستخدمت دراسة (الطيب، 2006) ذات المنهجية للتنبؤ بالتضخم في السودان في المستقبل معتمدة على بيانات الفترة ARIMA (1, 1, 0) أن نموذج (1, 1, 0) هو أفضل نموذج يلائم ظاهرة التضخم في السودان لفترة الدراسة.

وتوصلت دراسة (Dobre and Alexandru, 2008) إلى أن النموذج الأفضل للتنبؤ بمعدلات البطالة في رومانيا باستخدام بيانات شهرية خلال الفترة 1998 – 2007 هو نموذج ARIMA بيانات شهرية خلال الفترة (نقار والعواد، 2011) إلى أن أفضل نموذج قياسي للتنبؤ بأعداد التلاميذ المتوقع توافدهم إلى الصف الأول من التعليم الأساسي في قطاع التعليم في سوريا هو نموذج ARMA (0,1,1)

كما أن دراسة (باعشن، 2014) هدفت الى إيجاد نموذج التنبؤ باتجاهات أعداد المقبولين في كلية العلوم الإدارية بجامعة عدن اعتمادا على بيانات الفترة 1995 – 2014، وباستخدام الفروق الأولى توصلت الدراسة إلى أن النموذج الملائم لهذه السلسلة هو نموذج (4,1,4) ARMA الذي استخدم للتنبؤ بأعداد الطلاب في كلية العلوم الإدارية في جامعة عدن حتى عام 2025.

يينما توصلت دراسة (بوزيدي، 2014) إلى ان نموذج -ARI بدون ثابت هو النموذج المناسب للتنبؤ بحجم الطلب على منتوجات الصناعات الغذائية في الجزائر، وذلك انطلاقا من بيانات شهرية خلال الفترة 2008 – 2012.

وتناولت دراسة (البلخي وقزما، 2015) تطبيق منهجية بوكس جينكينز للتنبؤ بايرادات ضريبة دخل المهن والحرف الصناعية والتجارية وغير التجارية في سوريا خلال الفترة 1999 الى 2010، حيث توصلا إلى أن أفضل نموذج للتنبؤ هو نموذج الانحدار من الدرجة الثالثة ونموذج (0,2,2) ARIMA دون الاخذ بالاعتبار التغيرات الموسمية والطارئة.

فيما تناولت دراسة (التلباني، 2015) التنبؤ بإنتاج القمح في الصين باستخدام منهجية بوكس جينكينز، وبمقارنة عدة نماذج مختلفة تبين أن النموذج الامثل هو نموذج (0,2,1) .

أما دراسة (بن محسن، 2016) فتوصلت الى نموذج ARMA (0,1,1) باعتباره الأفضل للتنبؤ بمبيعات الخطوط الجوية بورقلة/ الجزائر خلال الفترة 2010 إلى 2015.

وباستخدام المنهجية ذاتها قامت دراسة (دربال ورملي، 2016) للتنبؤ بسعر الصرف الرسمي للدينار الجزائري مقابل الدولار على المدى القصير، وذلك باستخدام بيانات شهرية خلال الفترة 1/ 2009 الى 12/ 2014، حبث توصلت إلى أن أفضل سلسلة سعر صرف رسمي هو نموذج الانحدار الذاتي من الدرجة الاولى (1) AR ذو التاثيرات الفصلية.

ما يميز هذه الدراسة:

يمكن القول أن ما يميز الدراسة الحالية هو أنها الدراسة الفلسطينية الأولى، على حد علم الباحث، التي تتناول التنبؤ بالتدفقات النقدية باستخدام منهجية بوكس – جينكينز وتحديدا في قطاع البنوك، أما الدراسات العربية والأجنبية السابقة فقد ركزت معظمها على التنبؤ بالتدفقات النقدية باستخدام النسب المشتقة من قائمة التدفقات النقدية او باستخدام الارباح المحاسبية.

منهج الدراسة:

بالنظر لطبيعة موضوع هذه الدراسة تم الاعتماد على المنهج الوصفي التحليلي، والذي يمثل أسلوب من أساليب التحليل المرتكز على معلومات كافية ودقيقة عن ظاهرة، أو موضوع محدد خلال فترة زمنية معلومة؛ وذلك من أجل الحصول على نتائج عملية يتم تفسيرها بموضوعية وبما ينسجم مع المعطيات الفعلية للظاهرة. وقد تم تطبيق دراسة الحالة من خلال اختيار التدفقات النقدية لبنك فلسطين كعينة لتطبيق منهجية بوكس – جينكينز المعروفة بنماذج ملاسطة من أجل دراسة الاتجاه العام للتدفقات النقدية واستنباط نموذج للتنبؤ بالتدفقات النقدية المستقبلية.

مجتمع الدراسة وعينتها:

يتكون مجتمع الدراسة من كافة البنوك الفلسطينية، وقد تم أخذ بنك تجاري واحد هو بنك فلسطين كحالة ممثلة للبنوك الفلسطينية نظراً لمحدودية البيانات التي تقدمها البنوك التجارية المحلية وحتى تكون الدراسة شاملة وموضوعية.

وقد تم الاعتماد على قاعدة بيانات التدفقات النقدية من أنشطة التشغيل والتدفقات النقدية من جميع الأنشطة لبنك فلسطين خلال الفترة 6/ 2000 الى 6/ 2017 أي باستخدام 35 مشاهدة لكل نوع من التدفقات، وذلك من القوائم المالية المنشورة على الموقع الالكتروني للبنك (www.bankofpalestine.com).

مصادر جمع البيانات:

تم جمع البيانات من المصادر الثانوية المتمثلة في: الكتب والمجلات ومواقع الإنترنت، بالإضافة إلى الدراسات والمقالات والرسائل الجامعية المتعلقة بالموضوع لتغطية الجانب النظرى،

وكذلك القوائم المالية لبنك فلسطين لتغطية الجانب التحليلي.

وقد تم جمع بيانات الدراسة من الموقع الالكتروني لبنك فلسطين، حيث تم نشر القوائم المالية نصف السنوية للبنك واعتمادها، وبذلك فان هذه القوائم تتمتع بمصداقية معقولة يمكن الاعتماد عليها للقيام بالدراسة القياسية.

الأساليب الإحصائية المستخدمة:

تم في هذه الدراسة الاعتماد على أسلوب دراسة الحالة باستخدام الانحدار الخطي المتعدد لاختبار فرضيات الدراسة ودراسة العلاقة بين المتغير التابع والمتغيرات المستقلة، وقياس مدى تفسير المتغيرات المستقلة للمتغير التابع اعتمادا على منهجية بوكس – جينكينز، وقد تم اجراء مجموعة من الاختبارات للبيانات وتحليلها باستخدام البرنامج الاحصائى Eviews 9.5

حدود الدراسة:

اقتصرت الدراسة على بنك واحد هو بنك فلسطين نظرا لتوفر سلسلة زمنية مناسبة لاجراء التحليل القياسي.أما حدود الدراسة الزمانية فتتمثل في الفترة الممتدة بين منتصف عام 2000 الى منتصف عام 2017، وتعتبر هذه الفترة كافية لدراسة نماذج تأثير المتغيرات المستقلة على المتغيرات التابعة.

محددات الدراسة:

من بين أهم الصعوبات التي إعترضت الباحث في إنجاز هذه الدراسة هي الفترة الزمنية القصيرة لنشر قائمة التدفقات النقدية في البنوك الفلسطينية، ولقوائم سنوية مدققة او نصف سنوية معتمدة، مما جعل الدراسة تقتصر على بنك واحد بدلا من العديد من البنوك، كما أن هناك نقص في الدراسات القياسية المرتبطة بموضوع الدراسة في المكتبة الفلسطينية.

منهجية بوكس جينكنز

Methodology Box - Jenkins

لاستكمال الجانب التطبيقي لهذه الدراسة وإضفاء الصبغة القياسية ثم الاعتماد على منهجية بوكس جينكينز Box - Jenkins التي استخدمت للتنبؤ بالسلاسل الزمنية المستقبلية في مختلف المجالات الاقتصادية وغير الاقتصادية (EL Souda, 2000)

ويعرف نموذج بوكس جينكنز بنموذج الارتباط الذاتي Autoregressive Moving Average (ARMA) والمتوسط المتحرك Autoregres- ييث يجمع هذا النموذج بين نموذج الانحدار الذاتي Sive Model (AR) ، ونموذج المتوسط المتحرك Model (MA) .

ويعبر نموذج الانحدار الذاتي عن علاقة المتغير التابع بالمتغيرات المستقلة المتمثلة في القيم الماضية لنفس المتغير التابع ولعدد محدد من فترات الابطاء، بحيث يرمز (P اليخار ذاتي من الدرجة P ويعبر عنه بالمعادلة التالية: (شيخي، 2012، صP2013)

$$Y_t = \theta_1 Y_{(t-1)} + \theta_2 Y_{(t-2)} + + \theta_p Y_{(t-p)} + u_t$$

أما نموذج المتوسط المتحرك فيعبر عن المتغير التابع كدالة للمتوسط المرجح للقيم السابقة للحد العشوائي MA إلى غاية الفترة ويعبر عنه بالمعادلة التالية: (شيخي، 2012، ص226)

$$Y_t = u_t + \vartheta_1 u_{(t-1)} + \vartheta_2 u_{(t-2)} + \dots + \vartheta_q u_{(t-q)}$$

ولصياغة نموذج ARMA يتم دمج النموذجين معاً (p) MR (و) MA (q) في نموذج واحد يسمى (p,q) ARMA ، ويعبر عنه بالمعادلة التالية: (شيخي، 2012، ص233)

$$\begin{split} Y_t &= \theta_1 Y_{(t-1)} + \theta_2 Y_{(t-2)} + \ldots + \theta_p Y_{(t-p)} + u_t + \vartheta_1 u_{(t-1)} \\ &+ \vartheta_2 u_{(t-2)} + \ldots + \vartheta_q u_{(t-q)} \end{split}$$

حيث أن θ و θ : معاملات الانحدار الذاتي والمتوسط المتحرك على الترتيب.

ويتطلب تقدير النموذج السابق أن تكون السلسلة الاصلية للمتغير التابع مستقرة (stationary)، ولذلك إذا لم تكن السلسلة مستقرة يتم تحويلها إلى مستقرة من خلال اخذ الفروق وبالتالي يتحول النموذج من ARMA الى ARIMA أي نموذج الانحدار الذاتي Altoregressive Integrated Mov- والذي يتصف بثلاث رتب رئيسة هي: رتبة الانحدار (a) ورتبة التكامل (b) ورتبة المتوسط المتحرك (p) ويرمز له بالرمز (p,d,q) حيث يتم تحديد رتبة b وفقاً لعدد مرات الفروق المطلوبة لتحويل السلسلة الى سلسلة مستقرة.

ويعتبر نموذج ARMA من النماذج الأكثر استخداماً في تحليل السلاسل الزمنية حيث يقوم على مجموعة مراحل هي: (الغنام، 2003)

■ مرحلة التعريف Identification حيث يتم فحص استقرار السلسلة الزمنية وتطبيق الفروق اللازمة لجعلها مستقرة إن لم تكن كذلك أي تحديد رتبة درجة التكامل (d) .ويستخدم في هذه المرحلة إختبار الارتباط الذاتي (Autocorrelation (ACF) او اختبار جذر البعدة Unit root.

كما يتم في هذه المرحلة تحديد درجات الانحدار الذاتي (q) والمتوسط المتحرك (p) من خلال اختيار أقل رتب p و p بحيث تكون بواقي النموذج المقدر خالية من الارتباط الذاتي، وعادة ما يستخدم اختبار الارتباط الذاتي (ACF) لتحديد الرتبة p أي (p) (p)

كما يمكن تحديد الدرجات p و p باستخدام معيار المعلومات أكايكي AlC) Akaike) أو معيار المعلومات شوارتز (AlC) Schwarz (SBC) بحيث يتم اختيار نموذج (p,q) ARMA الذي له أقل قيمة لمعياري المعلومات المذكورين.

■ مرحلة تقدير النموذج ARIMA حيث يستخدم طريقة تقدير غير خطية بدلاً من طريقة المربعات الصغرى الاعتيادية نظراً لوجود المتوسط المتحرك الذي يحتوي على حدود خطأ غير معلومة.حيث يتم تقدير عدة نماذج متقاربة للمقارنة بينها واختيار النموذج ذو المعالم المقدرة ذات الدلالة الاحصائية، بالاضافة إلى مقارنة مجموع مربع البواقي كمقياس لجودة النموذج.وتستخدم هذه الدراسة البرنامج الاحصائي 5.5 Eviews الذي يعتمد طريقة

الإمكانية العظمى (Maximum Likelihood) في تقدير معلمات النموذج.

■ مرحلة التشخيص والتحقق من صحة النموذج:

من الضروري فحص النموذج الذي تم اختياره والتأكد من خلال أنه صحيح ، ويحقق الفرضيات التي بنى عليها، وذلك من خلال التأكد من خلو بواقي النموذج من الارتباط الذاتي أو تركيبة المتوسط المتحرك، أي أن يكون حد الخطأ في النموذج مطابق لشروط التشويش الأبيض White noise ، ويستخدم اختبار الارتباط الذاتي للبواقي في النموذج المقدر للتحقق من صحة النموذج، بحيث يتم التأكد من أن بواقي النموذج غير مرتبطة وتباينها ثابت مع تغير الزمن، ويستخدم عدة اختبارات لذلك منها اختبار ديربن واتسون الرمن، ويستخدم عدة اختبارات لذلك منها اختبار ديربن واتسون وتبايناتها ثابتة مع الزمن أمكن ذلك من حساب التنبؤات بواسطة وتبايناتها ثابتة مع الزمن أمكن ذلك من حساب التنبؤات بواسطة بين الاخطاء وعدم ثبات التباين) فهذا يعني أننا سنعيد تشخيص النموذج من جديد و ذلك باستخدام تقنيات ونماذج أخرى للسلاسل الزمنية أكثر تعقيدا.

مرحلة التنبؤ

بعد تقدير معالم النموذج (p,q) أو (p,d,q) أو (p,d,q) واختبار الأفضل من بينها، نقوم باستخدام هذا النموذج في عملية التنبؤ، وذلك بإحلال القيم الحالية والماضية للمتغير التابع Yt والبواقي كقيم تقديرية لحد الخطأ في الجانب الايمن من النموذج، وذلك للحصول على القيمة الاولى المتنبأ بها Yt+1، ويتم التنبؤ تتابعيا أي استخدام القيمة التنبؤية الاولى للتنبؤ بالقيمة التنبؤية للفترة التالية وهكذا.

وللمقارنة بين النماذج المتنبأ بها يتم استخدام جذر مربع اخطاء التنبؤ (MAPE) أو متوسط معدل الخطأ المطلق (MAPE) بين القيم المتوقعة والقيم الحقيقية للسلسلة، حيث يتم اختيار النموذج الذي ينتج أقل مربع أو معدل اخطاء.

نتائج الدراسة:

أولاً: الاحصاء الوصفي:

جدول رقم (1) : الخصائص الاحصائية للبيانات خلال الفترة 6/ 2000 - 6/ 2017

التدفق النقدي من جميع الأنشطة	التدفق النقدي من أنشطة التشغيل	المتغير الإحصائية
20629136	27784347	المتوسط الحسابي المتوسط الحسابي
1746442	23803117	الوسيط
72233693	74292315	الانحراف المعياري
0.657 -	- 1.262	الالتواء
5.11	7.393	التفرطح
9.035	37.33	Jarque - Bera التوزيع الطبيعي
0.011	0.000	الاحتمالية
35	35	عدد المشاهدات

المصدر: مخرجات برنامج Eviews 9.5

يوضح الجدول (1) الخصائص الاحصائية للتدفق النقدي من أنشطة التشغيل والتدفق النقدي من جميع الأنشطة، حيث يتبين أن قيم المتوسط الحسابي والوسيط كانت ايجابية، وكانت قيم الانحراف المعياري مرتفعة مما يعني وجود تقلبات عالية في التدفقات النقدية لبنك فلسطين، وهي نتيجة طبيعية وفقا للتقلبات في الاوضاع الاقتصادية والسياسية المحيطة بعمل البنك.

أما قيم معاملات الالتواء (SKEWNESS) للسلسلتين الزمنيتين للتدفقات النقدية فقد كانت أصغر من الصفر (سالبة) وبالتالي فإن شكل التوزيع غير متناظر، وهو ملتو نحو اليسار (يبتعد عن التوزيع الطبيعي) مما يدل على أن التدفقات النقدية في هذه السلاسل الزمنية تتأثر بالصدمات السالبة (الأخبار السيئة) أكثر من الصدمات الموجبة (الأخبار الجيدة).

وتدل قيم التفرطح (KURTOSIS) على أن التدفقات النقدية للبنك كانت ذات ذروة مرتفعة بالمقارنة مع التوزيع الطبيعي حيث كان معامل التفرطح لها اكبر من (3) ، وهذا يدل على وجود قيم شاذة في السلاسل الزمنية مما يودي إلى ارتفاع وانخفاض مؤقت في التدفقات النقدية، وتؤكد قيم اختبار جاركو – بيرا – Darque للتوزيع الطبيعي على أن السلاسل الزمنية للتدفقات النقدية

تبتعد عن التوزيع الطبيعي عند مستوى الدلالة (5%) حيث كانت القيمة الاحتمالية المصاحبة لقيمة الاختبار أقل من مستوى المعنوية (5%).

ثانياً: تحليل السلاسل الزمنية

■ اختبار الارتباط الذاتي Autocorrelation:

المدخل الاول لاختبار استقرار سلاسل التدفقات النقدية هو اختبار الارتباط الذاتي بمعنى تحديد العلاقة بين قيمة التدفقات النقدية في الفترة الحالية وقيمتها في الفترة السابقة.

ويهدف هذا الاختبار إلى تحديد مدى استقلالية قيم التدفقات النقدية عن بعضها البعض (white noise) من خلال اختبار مدى اختلاف معامل الارتباط الذاتي احصائياً عن الصفر، حيث تاخذ فرضية الارتباط الذاتي الشكل التالي:

$$H_0$$
: $_k = 0$ (معاملات الارتباط الذاتي جميعها = صفر) معاملات الارتباط الذاتي جميعها \neq صفر)

ولاختبار هذه الفرضية تستخدم إحصائية Q) Ljung - Box ولاختبار هذه الفرضية تستخدم إحصائية على عدم وجود ارتباط ذاتي في سلسلة قيم التدفقات النقدية فإن السلسلة مستقرة.

جدول رقم (2 - أ) : معاملات الارتباط الذاتي للتدفقات النقدية من أنشطة التشغيل

10	9	8	7	6	5	4	3	2	1	Lag
- 0.02	0.09	0.07	- 0.40	- 0.01	- 0.16	- 0.09	- 0.09	0.30	- 0.23	ACF
15.23	15.21	14.81	14.58	7.21	7.21	6.15	5.81	5.48	2.07	Q
0.12	0.09	0.06	0.04	0.30	0.21	0.19	0.12	0.06	0.15	P

المصدر: مخرجات برنامج Eviews 9.5

جدول رقم (2 - ب) : معاملات الارتباط الذاتي للتدفقات النقدية من جميع الأنشطة

10	9	8	7	6	5	4	3	2	1	Lag
0.25	0.03	0.10	- 0.28	0.03	- 0.23	0.20	- 0.43	0.27	- 0.29	ACF
25.08	21.87	21.82	21.34	17.76	17.71	15.36	13.68	6.12	3.25	Q
0.005	0.009	0.005	0.003	0.007	0.003	0.004	0.003	0.05	0.07	P

المصدر: مخرجات برنامج Eviews 9.5

وتبين النتائج في جدول (2-1 و ب) قيم الارتباط الذاتي لسلسلتي التدفقات النقدية من أنشطة التشغيل والتدفقات النقدية من جميع الأنشطة لبنك فلسطين لعشر فترات ابطاء (Lags) ، حيث تشير النتائج إلى أن الارتباط الذاتي لسلسلة التدفقات النقدية من أنشطة التشغيل عند فترات الابطاء الستة الاولى والفترات الثامنة والتاسعة والعاشرة غير دال إحصائياً عند مستوى دلالة ((50)) وفقاً لقيم اختبار Q والقيم الاحتمالية المرافقة لها، وبالتالي نرفض الفرض العدم الذي يشير الى تساوي معاملات الارتباط الذاتى مع بعضها ومساواتها بالصفر ونقبل الفرض البديل.وهذه

النتائج تبين أن سلسلة التدفقات النقدية من أنشطة التشغيل للبنك ذات تشويش أبيض (white noise) مستقرة.بينما تشير النتائج إلى أن الارتباط الذاتي لسلسلة التدفقات النقدية من جميع الأنشطة دال احصائيا عند مستوى دلالة (5%) لجميع فترات الابطاء باستثناء فترة الإبطاء الأولى وبالتالي نقبل الفرض العدم الذي يشير إلى تساوي معاملات الارتباط الذاتي مع بعضها ومساواتها بالصفر، وهذه النتيجة تبين أن سلسلة التدفقات النقدية من جميع الأنشطة غير مستقرة باستثناء الفترة الأولى كون السلسلة لا تحتوي ارتباطاً ناتياً من الدرجة الاولى.

■ اختبار جذر الوحدة: Unit Root Test

وللتاكد من استقرار السلاسل الزمنية Stationery استخدم الباحث اختبار ديكي فولر المعدّل Augmented Dickey - Fuller المعدّل ADF واختصاره ADF المقترح من قبل ADF المقترح من قبل (1987) الذي يعتمد على ثلاثة نماذج: نموذج دون وجود ثابت ولا اتجاه عام، ونموذج بوجود ثابت ودون اتجاه عام ونموذج بوجود ثابت واتجاه عام، وذلك لاختبار الفرضية التالية:

 H_0 : $\alpha < 0$ النقدية تحتوي على جذر الوحدة H_1 : $\alpha = 0$ (ساكنة) H_1 : $\alpha = 0$

ويعتمد اختبار ديكي فولر المعدّل ADF على احصائية t لمعامل معادلة الانحدار الذاتي (α)، وفي حال كانت احصائية t المحسوبة اكبر من احصائية t الجدولية عند مستوى معنوية (∞ 5) فإنه يتم رفض الفرضية الصفرية (فرضية العدم) وتكون السلسة الزمنية للتدفقات النقدية مستقرة Stationary، ومن ثم يمكن التوقع بالقيم المستقبلية للتدفقات النقدية.

وعند إجراء الاختبارات وفق النماذج الثلاث على السلاسل للزمنية حدد برنامج EViews حد أقصى لعدد فترات الإبطاء (-Max = 8) وبشكل آلي اختار البرنامج عدد فترات الإبطاء بفترة واحدة، والجدول التالي يوضح نتائج الاختبارات والقيم المحسوبة لسلسلتي التدفقات النقدية من أنشطة التشغيل والتدفقات النقدية من جميع الأنشطة لبنك فلسطين.

جدول رقم (3): اختبار ديكي فولر الموسع لجذر الوحدة

	ADF		البيان
باتجاه وقاطع	بقاطع	بدون قاطع	المتغير
- 7.05	- 7.16	- 2.65	التدفق النقدي من أنشطة التشغيل
(0.000)	(0.000)	(0.01)	
7.55 -	7.61 -	6.92 -	التدفق النقدي من جميع الأنشطة
(0.000)	(0.000)	(0.000)	

المصدر: مخرجات برنامج Eviews 9.5

*القيم الحرجة بين الاقواس

*الفرضية الصفرية: السلسة الزمنية للمتغير لها جذر وحدة

ونلاحظ من الجدول رقم (8) أن القيم الإحصائية المحسوبة للنماذج الثلاثة (بدون أو مع اتجاه عام ومع ثابت) في اختبار ديكي فولر المعدل عند مستوى معنوية (%5) أكبر (اكثر سلبية) من القيمة الجدولية حيث كانت قيم الاحتمالات المصاحبة للاختبار (مستوى المعنوية المحسوب) اقل من (%5), وبالتالي نرفض فرضية العدم ونقبل الفرضية البديلة في كل الاختبارات على السلسلة المدروسة، والفرضية البديلة تؤكد عدم وجود جذر وحدة ومن ثم فإن السلسلتين الزمنيتين للتدفقات النقدية من أنشطة التشغيل ومن جميع الأنشطة مستقرة (ساكنة).

■ اختبار استقلالية مشاهدات السلسلة:

لاختبار استقلالية مشاهدات السلسلة الزمنية للتدفق النقدي التشغيلي وقابليتها للتنبؤ على المدى القصير تم استخدام الاختبار

المقترح من قبل (Brock, et.al., 1987)، والذي يعرف باسم اختبار BDS، وذلك لاختبار الفرضية القائلة بأن السلسلة الزمنية مستقلة ومتماثلة التوزيع Independently and identically distributed) (IDD) مقابل فرضية الارتباط الخطى وغير الخطى.

وفي حال قبول الفرضية الصفرية (فرضية العدم) بأن السلسلة الزمنية مستقلة ومتماثلة التوزيع فإن ذلك يعني عدم وجود ارتباط بين المشاهدات وبالتالي يثبت فرضية عدم استقرارية السلسة الزمنية وبالتالي عدم امكانية استخدامها للتنبؤ في المدى القصير.

جدول رقم (4): نتائج اختبار الاستقلالية BDS على سلسلة التدفقات النقدية

P - v	/alue	Z - 9	stat.	BDS	М	
CF	OCF	CF	OCF	CF	OCF	الابعاد M
0.37	0.2	0.963	1.291	0.016	0.035	2
0.27	0.47	1.19	0.723	0.03	0.023	3
0.26	0.59	1.137	0.539	0.037	0.021	4
0.68	0.67	0.411	0.421	0.014	0.017	5
0.21	0.34	0.366	0.950	0.013	0.038	6

المصدر: مخرجات برنامج Eviews9.5: التدفق النقدي من أنشطة التشغيل CF: التدفق النقدي من جميع الأنشطة

وتشير النتائج في جدول رقم (4) إلى أن جميع قيم احصائية BDS لسلسلة التدفقات النقدية من أنشطة التشغيل (OCF) وسلسلة التدفقات النقدية من جميع الأنشطة (CF) صغيرة وأقل من القيمة الجدولية للتوزيع الطبيعي عند مستوى معنوية (50), ويظهر ذلك من قيم مستوى المعنوية المحسوب التي تزيد جميعها عن (50), ولذلك فإن هذه النتائج تبين رفض الفرضية الصفرية بأن سلسلة التدفقات النقدية مستقلة ومتماثلة التوزيع (IDD) ونقبل الفرض البديل القائل بوجود الارتباط الخطي وغير الخطي، وبالتالي استقرارية السلاسل الزمنية وقابليتها للتنبؤ على المدى القصير.

عموماً هذه النتائج تؤكد تلك التي تم التوصل إليها في اختبارى الارتباط الذاتي وجذر الوحدة.

وبناء على أن نتائج الاختبارات الثلاثة التي اكدت على استقرارية سلسلة التدفقات النقدية لبنك فلسطين، فإنه يمكن الاعتماد على بياناتها واستخدامها في نماذج بوكس – جنكينز للتنبؤ بالتدفقات النقدية المستقبلية، لأن الاستقرارية شرط أساسي من شروط منهجية بوكس – جنكينز.

◄ اختبار الفرضية الاولى:

تنص الفرضية الاولى على أنه: «لا يصلح نموذج بوكس جينكينز (ARIMA) للتنبؤ بالتدفقات النقدية المستقبلية للبنوك الفلسطينية».

ولاختبار هذه الفرضية تم تطبيق منهجية بوكس جنكينز للتنبؤ بالتدفقات النقدية من أنشطة التشغيل والتدفقات النقدية من جميع الأنشطة، حيث أشارت النتائج إلى استقرار السلسلة الزمنية للتدفقات النقدية عند المستوى الاول، وبالتالي فإن النموذج الممكن دراسته هو من الشكل (p,q) ARMA وليس (p,d,q) ، ومن أجل وضع نموذج مناسب للتنبؤ بهذه التدفقات، سيتم صياغة مجموعة نماذج والمفاضلة بينها على أساس معياري المعلومات أكايكي (AIC) وشوارتز (BSC) وكلما كانت قيم هذه المعايير أصغر كلما كان أفضل.

ولتطبيق منهجية بوكس جنكينز Box - Jenkins نمر بالمراحل التالية:

■ مرحلة التعريف (تحديد النموذج)

p,q من لتعريف أو تحديد النموذج نبدأ بتحديد رتبة كل من p,q لنموذج ARMA باستخدام معياري المعلومات أكايكي (AIC) و لنموذج ARMA باستخدام معياري المعلومات أكايكي (SBC) ، حيث تبين النتائج في الجدول رقم (5-1) الى ان أفضل نموذج من بين النماذج المرشحة للتنبؤ بسلسلة التدفق النقدي من أنشطة التشغيل هو نموذج (2,4) (AIC) وشوارتز (SBC) حيث كانت قيم معياري المعلومات أكايكي (AIC) وشوارتز (SBC) الأقل من ضمن جميع النماذج ، كما تم اختيار نموذج (2,2) ARMA كونه جاء في المرتبة الأولى أيضاً وفقا لمعيار شوارتز، وحيث أن معيار أكايكي يكون بالعادة متحيزا للنماذج الأكثر معالم سيتم أيضاً فحص نموذج (1,1) ARMA مع أن قيم معياري المعلومات لهذا النموذج مرتفعة بالمقارنة مع النماذج الأخرى.

جدول رقم (5 - أ) : معايير اختيار رتب نموذج ARMA لسلسلة التدفقات النقدية من أنشطة التشغيل

(4,4)	(4,3)	(3,4)	(3,3)	(4,2)	(3,2)	(2,4)	(2,3)	(2,2)	(4,1)	(3,1)	(2,1)	(1,4)	(1,3)	(1,2)	(1,1)	ARMA (p,q)
39.14	39.26	39.26	39.2	39.22	39.16	39.1	39.2	39.18	39.33	39.28	39.18	39.27	39.25	39.24	39.31	AIC
39.54	39.61	39.61	39.52	39.53	39.44	39.41	39.47	39.41	39.59	39.5	39.42	39.54	39.48	39.42	39.44	SBC

المصدر: مخرجات برنامج Eviews 9.5

في حين تبين النتائج في الجدول رقم (5-v) إلى أن أفضل نموذج من بين النماذج المرشحة للتنبؤ بسلسلة التدفق النقدي من جميع الأنشطة هو نموذج (1,1) ARMA بدون ثابت، حيث كانت قيم معياري المعلومات أكايكي (AIC) و شوارتز (SBC) الأقل من ضمن جميع النماذج، كما تم اختيار نموذج (1,2) ARMA كونه جاء في المرتبة الاولى أيضاً وفقا لمعيار أكايكي.

جدول رقم (5 - ب) : معايير اختيار رتب نموذج ARMA لسلسلة التدفقات النقدية من جميع الأنشطة

(4,4)	(4,3)	(3,4)	(3,3)	(4,2)	(3,2)	(2,4)	2,3)	(2,2)	4,1)	(3,1)	2,1)	(1,4)	(1,3)	(1,2)	(1,1)	ARMA (p,q)
39.23	39.23	39.19	39.23	39.21	39.21	39.25	39.2	39.17	39.15	39.16	39.12	39.19	39.27	39.10	39.10	AIC
39.63	39.58	39.55	39.54	39.52	39.48	39.56	39.47	39.39	39.42	39.38	39.30	39.46	39.49	39.28	39.24	SBC

المصدر: مخرجات برنامج Eviews 9.5

■ مرحلة تقدير النموذج

تظهر نتائج تقدير النماذج المرشحة للتنبؤ بسلسلة التدفق النقدي من أنشطة التشغيل وسلسلة التدفق النقدي من جميع الأنشطة في الجدول رقم (6):

جدول رقم (6) : نتائج تقدير نماذج (p,q) (ARMA) للتدفق النقدي

, جميع الأنشطة	التدفق النقدي مز	غيل	النموذج_		
ARMA (1,2)	ARMA (1,1)	ARMA (2,4)	ARMA (2,2)	ARMA (1,1)	المعاملات
0.733 - (0.011)	0.892 - (0.000)	0.376 (0.23)	0.822 - (0.004)	0.789 - (0.03)	AR (1)
		0.398 - (0.1)	0.569 - (0.23)	-	AR (2)
0,755 (0.022)	0.727 (0.004)	0.671 - (0.81)	0.733 (0.999)	0.647 (0.09)	MA (1)

, جميع الأنشطة	التدفق النقدي مز	فيل	التدفق النقدي من أنشطة التشغيل							
ARMA (1,2)	ARMA (1,1)	ARMA (2,4)	ARMA (2,2)	ARMA (1,1)	المعاملات					
0.358 (0.111)		1.289 (0.73)	0.999 (0.999)		MA (2)					
		0.451 - (0.06)			MA (3)					
		0.796 (0.84)			MA (4)					
0.132	0.073	0.395	0.244	0.08	R2					
2.00	1.7	1.93	1.74	1.76	D.W					
(1.65 - 1.28)	(1.58 - 1.34)	(1.88 - 1.1)	(1.73 - 1.22)	(1.58 - 1.34)	القيم الحرجة					

^{*} مستوى المعنوية المحسوب بين الاقواس المصدر: مخرجات برنامج Eviews 9.5

وتشير النتائج في الجدول رقم (6) أن الاحتمال المقابل للإحصائية t اكبر من (%5) لجميع معالم نموذج (2,4) للإحصائية t المعتمد في الدراسة، باستثناء (8) MA حيث كان معامله معنوي عند مستوى الدلالة (%0)، وبناء على ذلك فإننا نقبل الفرضية العدمية التي تنص على عدم معنوية معالم النموذج المقدرة عند مستوى معنوية (%5)، بينما كان معامل الانحدار الذاتي الأول (5) AR (5) مينويا عند مستوى (1) AR لنموذج (2,2) ARMA سالبا ومعنويا عند مستوى (1) والقيمة المطلقة له أقل من واحد صحيح، وبالتالي نرفض الفرضية العدمية ونقبل الفرضية البديلة بأن أحد معالم النموذج المقدر ذات (5).

ARMA أما النموذج البديل المقترح اختباره وهو نموذج ARMA (1,1) فتشير النتائج في الجدول رقم (6) إلى أن معالم النموذج معنوية عند مستوى (5%) للمعلم (1) AR وعند مستوى (5%) للمعلم (1) MA وبالتالي نرفض فرضية العدم التي تنص على عدم معنوية المعالم وبالتالي فان معالم النموذج المقدرة معنوية.

واعتماداً على قيمة معامل التحديد المتعدد R2 الذي يفسر العلاقة بين المتغيرات التابعة والمستقلة ومن خلال النتائج الواردة في جدول (6) يمكن ملاحظة ان قيم R2 تراوحت بين حوالي (7%) و (39%) مما يعني أن المتغيرات المستقلة تفسر ما نسبته (7%) إلى (39%) من التغيرات الكلية للمتغيرات التابعة، ويمكن الاعتماد على هذه النتائج كون معامل التحديد يتاثر بشكل كبير بعدد المتغيرات المستقلة (التفسيرية) حتى وإن لم تكن ذات دلالة احصائية.

■ مرحلة التشخيص والتحقق من صحة النموذج

تتضمن هذه المرحلة دراسة وتحليل بواقي النموذج المقدر وذلك بالاعتماد على اختبار الارتباط الذاتي للبواقي، حيث نبدأ

باختبار الارتباط الذاتي للأخطاء من الدرجة الأولى باستخدام الختبار درين واتسون (DW) وذلك بناءً على القيمة المحسوبة لهذا الاختبار، وتبين النتائج في الجدول رقم (6) أن قيم احصائية ديربن واتسون (D.W) لجميع النماذج أعلى من القيمة الحرجة العظمى واقل من قيم) (du) - 4، وبالتالي فهي تقع في منطقة عدم وجود الارتباط الذاتي وذلك يعني استقلالية الاخطاء، وبناء عليه يمكن القول أنه لا يوجد مشكلة ارتباط ذاتي للاخطاء من الدرجة الأولى، وبالتالى فان النماذج المقدرة مقبولة من الناحية الاحصائية.

إلا أن نتائج الارتباط الذاتي لفترات ابطاء متعددة (من الدرجة الثانية فأعلى) اختلفت عن نتائج الارتباط الذاتي من الدرجة الأولى، حيث تشير النتائج في جدول رقم (7) أن معاملات الارتباط الذاتي لنماذج (1,1) ARMA و(2,4) ARMA للتدفق النقدي من أنشطة التشغيل كانت معنوية لفترات الابطاء من الفترة السابعة وما بعدها حيث كانت قيم الاحتمالات المرافقة لاحصائية Q اقل من (5%) ، وبالتالي فإن هذه النماذج تعانى من مشكلة الارتباط الذاتي في البواقي وغير مقبولة من الناحية الاحصائية ولا تصلح للاستخدام في التنبق بينما يتبين من النتائج في الجدول رقم (7) إلى أن معاملات الارتباط الذاتي لبواقي النموذج (2,2) ARMA للتدفق النقدى من أنشطة التشغيل كانت غير معنوية عند مستوى معنوية (5%) لمعظم فترات الابطاء، وكذلك لنموذجي التدفق النقدى من جميع الأنشطة (1,1) ARMA) و (1,2) كانت غير معنوية حيث كانت قيم الاحتمالات المرافقة لاحصائية Q أكبر من (5%) ، مما يشير إلى خلو بواقي النماذج الثلاث من الارتباط الذاتي وبالتالي صلاحيتها للاستخدام في التنبؤ بالتدفقات النقدية المستقبلية.

جدول رقم (7):
القيم الحرجة لمعاملات الارتباط الذاتي لبواقي النماذج

Lag10	Lag9	Lag8	Lag7	Lag6	Lag5	Lag4	Lag3	القيم الحرجة النموذج	
0.08	0.05	0.04	0.02	0.33	0.26	0.16	0.23	ARMA (1,1)	
0.09	0.08	0.06	0.05	0.3	0.16	=	-	ARMA (2,2)	التدفق النقدي من أنشطة التشغيل
0.03	0.02	0.007	0.002	-	-	-	-	ARMA (2,4)	
0.25	0.18	0.36	0.26	0.29	0.36	0.21	0.08	ARMA (1,1)	· · · · · · · · · · · · · · · · · · ·
0.32	0.52	0.56	0.42	0.47	0.38	0.17	-	ARMA (1,2)	التدفق النقدي من جميع الأنشطة

المصدر: مخرجات برنامج Eviews 9.5

إعادة صياغة النماذج

بناء على نتائج الاختبارات الاحصائية السابقة يمكن استبعاد نماذج (1,1) ARMA و(2,4) في حالة التدفقات النقدية من أنشطة التشغيل، واعتماد نموذج (2,2) ARMA بعد استبعاد المعلمات غير المعنوية، وكذلك اعتماد نموذجي ARMA (1,2)) و (1,2) ARMA في حالة التدفق النقدى من جميع الأنشطة.

وبعد إعادة صياغة النماذج الثلاث المعتمدة وفقا للمتغيرات المستقلة ذات الدلالة الإحصائية فإن النموذج المعتمد للتدفق النقدي من اأنشطة التشغيل هو نموذج انحدار ذاتي من الدرجة الأولى AR (1)، بينما كان نموذجا التدفق النقدي من جميع الأنشطة متكافئين (نموذج انحدار ذاتي ومتوسط متحرك من الدرجة الاولى ARMA ((1,1) ولذلك يمكن اعتماد أحدهما بديلا عن الاخر.

■ مرحلة التنبوّ: Forecasting

للمفاضلة بين النماذج الثلاث المعتمدة في الدراسة ودقتها في التنبؤ يعرض الجدول رقم (8) قيم متوسط الخطأ المطلق النسبي MAPE، وجذر متوسط مربع الخطأ RMSE، ومتوسط الخطأ المطلق AMS، وخطأ التحيز B.P) Bias Proportion) على التوالي، حيث يتبين أن قيمة MAPE نموذج الانحدار الذاتي من الدرجة الأولى AR (1) AR للتدفق النقدي من أنشطة التشغيل كانت الأقل من بين القيم الثلاث، فيما كانت جميع قيم الخطأ الاخرى في صالح نموذج ARMA (1,2) فهو أفضل نموذج للتنبؤ بالتدفقات النقدية المستقبلية.

جدول رقم (8) : المقارنة بين اخطاء التنبؤ لنماذج الدراسة

B.P	MAE	RMSE	MAPE	النموذج	التدفق
0.124	57737906	80567778	105.3	AR (1)	التدفق النقدي من أنشطة التشغيل
0.075	54979356	75348483	142.11	ARMA (1,1)	التدفق النقدي
0.074	54784528	75111080	157.88	ARMA (1,2)	من جميع الأنشطة ــــــــــــــــــــــــــــــــــــ

المصدر: مخرجات برنامج Eviews 9.5

وبالتالي يمكن القول بان نموذج الانحدار الذاتي من الدرجة الاولى (1) AR للتدفق النقدي من أنشطة التشغيل صالح للتنبؤ بالتدفقات النقدية المستقبلية من أنشطة التشغيل في البنوك الفلسطينية، وأن نموذج الانحدار الذاتي والمتوسط المتحرك من الدرجة الأولى (1,1) ARMA يصلح للتنبؤ بالتدفقات النقدية المستقبلية من جميع الأنشطة في البنوك الفلسطينية.

عموماً تعتبر النماذج المقدرة مناسبة لمنهجية بوكس جينكينز التي تفضل النموذج الأقل معالم على النموذج الأكثر معالم من ناحية التنبؤ (Endres, 2010, p110).

والنتائج السابقة تدل على رفض الفرضية الأولى التي تنص على "لا يصلح نموذج بوكس جينكينز (ARIMA) للتنبؤ بالتدفقات النقدية المستقبلية للبنوك الفلسطينية»، وقبول الفرضية البديلة بأن نموذج بوكس جينكينز يصلح للتنبؤ بالتدفقات النقدية المستقبلية للبنوك الفلسطينية.

وتتوافق هذه النتيجة مع نتائج العديد من الدراسات التي تناولت استخدام النموذج في التنبؤ كدراسة (الغنام، 2003) التي استخدمت النموذج للتنبؤ بموشر سوق الاسهم السعودي.

◄ اختبار الفرضية الثانية:

تنص الفرضية الثانية على أنه: « لا توجد فروق ذات دلالة احصائية بين النماذج التي نحصل عليها من التدفق النقدي من انشطة التشغيل والنماذج التي نحصل عليها من التدفق النقدي من جميع الأنشطة».

ولاختبار هذه الفرضية تم استخدام البرنامج الاحصائي SPSS لاحتساب الدلالة الاحصائية للفروق بين النماذج المعتمدة في الدراسة من خلال تحليل التباين الاحادي One Way ANOVA في الدراسة من خلال تحليل التباين الاحادي (9) إلى واختبار ستيودنت (9) ، وتشير النتائج في الجدول رقم (9) إلى تحليل التباين بين سلاسل التدفقات النقدية المتوقعة من أنشطة التشغيل ومن جميع الأنشطة حيث كانت قيمة اختبار 7 صغيرة والاحتمال المصاحب لها أكبر من مستوى المعنوية) 8 0 (، مما يدل على قبول فرض العدم المتمثل بعدم وجود فروق ذات دلالة احصائية عند مستوى دلالة) 8 0 (بين النتائج التي نحصل عليها من نماذج التدفق النقدي من التشغيل ومن نماذج التدفق النقدي من جميع الأنشطة.

جدول رقم (9) : اختبار الفروق بين نماذج التنبؤ

القرار	F قيمة اختبار (الاحتمال)	قيمة اختبار T (الاحتمال)	المتوسط الحسابي	السلسلة
قبول	0.008 (0.93)	0.09 (0.93)	5505.8 -	التدفق النقدي من أنشطة التشغيل المتوقع
الفرض العدم			90041.8 -	التدفق النقدي من جميع الأنشطة المتوقع

المصدر: مخرجات برنامج SPSS

النتائج والتوصيات:

تتلخص نتائج الدراسة في أن سلسلة التدفقات النقدية لبنك فلسطين مستقرة (ساكنة) عند المستوى، حيث تم استخدام منهجية بوكس جينكينز في نماذج مختلفة من الانحدار الذاتي والمتوسط المتحرك (p,q) ARMA، وبعد اجراء سلسلة من الاختبارات لتشخيص وتقدير النموذج المناسب للتنبؤ بالتدفقات النقدية المستقبلية لبنك فلسطين كحالة تمثل البنوك الفلسطينية، تبين أن النموذج المناسب هو نموذج الانحدار الذاتي من الدرجة الاولى (1) AR للتنبؤ بالتدفقات النقدية المستقبلية من أنشطة التشغيل، ونموذج الانحدار الذاتي والمتوسط المتحرك من الدرجة الاولى (1,1) ARMA للتنبؤ بالتدفقات النقدية المستقبلية من جميع الأنشطة، وهذا يؤكد صلاحية استخدام منهجية بوكس جينكينز للتنبؤ بالتدفقات النقدية الفلسطينية.

وبما أن نماذج بوكس جينكينز للتنبؤ بالتدفقات النقدية قد أظهرت قدرة على التنبؤ بالتدفقات النقدية المستقبلية في البنوك الفلسطينية، فإن الباحث يوصي باستخدامها عند التنبؤ بالتدفقات النقدية المستقبلية وتحديد السيولة النقدية للوحدات الاقتصادية المختلفة، مع الأخذ بالاعتبار زيادة عدد المشاهدات من خلال اضافة البيانات الجديدة كلما كان ذلك متاحا، حيث تزيد دقة التنبؤ بزيادة عدد المشاهدات في السلسلة الزمنية.

كما يوصي الباحث باستخدام نماذج أخرى حديثة للتنبؤ بالتدفقات النقدية للبنوك كنموذج GARCH ومقارنة نتائجه مع مع نتائج هذه الدراسة من أجل اتخاذ القرارات الاستثمارية المناسبة.

المراجع

- أبو الفتوح، علي فضالة، إستراتيجية القوائم المالية، دار الكتب العلمية للنشر، القاهرة، (1996).
- 2. باعشن، هدى محمد، التنبؤ باتجاهات أعداد المقبولين في كلية العلوم الإدارية بجامعة عدن باستخدام منهجية (Box Jenkins) ، مجلة العلوم الادارية، المجلد 10، العدد 4، (2014) ، 2014
- البلخي، راتب، وجان قزما، استخدام السلاسل الزمنية لتحديد الاتجاه العام للإيرادات الضريبية المباشرة في سورية والتنبؤ بها: دراسة تطبيقية على إيرادات ضريبة دخل المهن والحرف الصناعية والتجارية وغير التجارية باستخدام نماذج أريما والسير العشوائي ونماذج الانحدار

للسلاسل الزمنية، مجلة جامعة تشرين للبحوث والدراسات العلمية، سلسلة العلوم الاقتصادية والقانونية، المجلد 37، العدد 2، (2015)، 2 من 2 من 2 من 2 العلام المجلد 2 العدد 2 ا

- بن محسن، زویلخة، دراسة تنبؤیة قصیرة المدی باستخدام منهجیة بوکس جنکینز: دراسة حالة المدیریة الجهویة للخطوط الجویة بورقلة وروقلة الجزائر، 2015، رسالة ماجستیر، جامعة قاصدی مرباح، ورقلة، الجزائر، (2016).
- ا. بوزيدي، حافظ أمين، استخدام منهجية بوكس جينكينز للتنبؤ بحجم الطلب على منتوجات الصناعات الغذائية في الجزائر (السميد نموذجا)، رسالة ماجستير، جامعة محمد خيضر، بسكرة، الجزائر، (2014)
- التلباني، شادي اسماعيل، استخدام منهجية بوكس جينكنز للتنبؤ
 بإنتاج القمح: دراسة حالة الصين، مجلة جامعة الازهر غزة، المجلد
 11، العدد 1، (2015)، ص ص 147 160
- 7. التميمي، عباس حميد، و عبد الرازق، عمار، التنبؤ بالتدفقات النقدية المستقبلية باستخدام مقاييس التدفق النقدي والعائد المحاسبي (بالتطبيق على عينة من المصارف العراقية للسنوات 2008-2018) ، مجلة العلوم الادارية والاقتصادية، جامعة بغداد، المجلد 21، العدد 84، (2015) ، ص 292-414
- جمعية المجمع العربي للمحاسبين القانونيين، المعايير الدولية لإعداد التقارير المالية، عمان، الأردن، (2006).
- 9. الخلايلة، محمود عبد الحليم، التحليل المالي باستخدام البيانات المحاسبية، مطابع الدستور التجارية، الطبعة الثالثة، عمان، (2004).
- 10. دربال، عبد القادر، و رملي، محمد، دراسة قياسية للتنبؤ بسعر الصرق الاسمي للدينار الجزائري على المدى القصير، مجاة الاقتصاد والتنمية، مخبر التنمية المحلية المستدامة، جامعة المدية، العدد 5، (2016) ، ص 5 52
- 11. شيخي، محمد، طرق الاقتصاد القياسي: محاضرات وتطبيقات ، دار حامد للنشر والتوزيع، الطبعة الأولى، الأردن، (2012)
- 12. الطيب، هادية حسن، تطبيق نماذج اريما على بيانات التضخم في السودان في الفترة من 1970 2005، رسالة ماجستير غير منشورة، جامعة السودان للعلوم والتكنولوجيا، (2006)
- 13. الغنام، حمد بن عبد الله، تحليل السلسلة الزمنية لمؤشر أسعار الأسهم في المملكة العربية السعودية باستخدام منهجية بوكس جينكينز، مجلة جامعة الملك عبد العزيز الاقتصاد والادارة، المجلد 7، عدد 2، (2003) ، ص 26 3
- 14. قويدري، عائشة، التنبؤ بالتدفقات النقدية المستقبلية باستخدام المعلومات المحاسبية دراسة حالة عينة من المؤسسات الاقتصادية في ورقلة للفترة 2013 2016، رسالة ماجستير غير منشورة، جامعة قاصدي مرباح، ورقلة، الجزائر، (2016)
- 15. مطر، محمد، الإتجاهات الحديثة في التحليل المالي والائتماني الأساليب والأدوات والإستخدامات العملية، دار وائل للنشر والتوزيع، الطبعة الثانية، عمان، (2006)
- 16. نقار، عثمان و العواد، منذر، منهجية Box Jenkins في تحليل السلاسل الزمنية والتنبؤ: دراسة تطبيقية على أعداد تلاميذ الصف الأول من التعليم الأساسى في سورية، مجلة جامعة دمشق للعلوم الاقتصادية والقانونية -

المجلد 27 – العدد الثالث، (2014) ، ص ص 125 – 152

- 17. الهباش، محمد يوسف، (2006) ، استخدام مقاييس التدفق النقدي و العائد المحاسبي للتنبؤ بالنفقات النقدية المستقبلية: درارسة تطبيقية على المصارف الفلسطينية، رسالة ماجستير، الجامعة الإسلامية، غزة
- 18. الوشلى، محمد على، قدرة مقياس التدفق النقدي والربح المحاسبي على التنبؤ بالتدفقات النقدية للبنوك التجارية في الأردن، رسالة ماجستير غير منشورة، جامعة ال البيت، المفرق، الأردن، (2002).
- 1. Brock, W., Dechert W., and Scheinkman J, A Test for Independence Based On the Correlation Dimension, Department of Economics, University of Wisconsin at Madison, University of Houston, and University of Chicago., (1987).
- 2. Curly, J. and Robert M. Bear, Investment Analysis and Management, Hrper & Rows Publishers, 2nd Ed., (1979)
- 3. Dirk, H., and Zweek A, Monitoring of Technology Forecasting Activities, an ESTO Project Report prepared for European Commission (JRC) and IPTS. . , (2001) (www. esto. Jrc. es/docs/forcasting.pdf).
- 4. Dobre, I., and Alexandru, A., Modelling Unemployment Rate Using Box - Jenkins Procedure, Journal of applied quantitative methods, Vol 3, No. 2, (2008), pp 156 - 166
- 5. EL. Souda, Rasha, Time Series Identification, Unpublished Master's Thesis, Faculty of Economics and Political Sciences, Cairo University, (2000).
- **6.** Endres, Walter, Applied Econometric Time series, (Third Edition), John Wiley & Sons, (2010).
- 7. Endres W. K, Applied Econometrics Time Series, 4th Edition, New York: John Wiley & Sons, (2014).
- 8. Fortnum, N. and Levern W., Quantitative Forecasting Methods, Boston, RWS Kent, (1982).
- 9. Nugus, Sue, Financial Planning Using Spread Sheets: Forecasting, Planing and Budgets Techniques, Kogan Pag Press Ltd., 1st Ed., (1997).
- 10. Palepu, K.; Healy, P.; Bernard, V., Business Analysis & Valuation: Using Financial Statements. New York: Thomson, south—western, (2004).