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ABSTRACT

In literature, several methods suggested for the detection of multicollinearity in
multiple regression models, and one of the multicollinearity problems solutions is to omit
the explanatory variables in the model, which cause the multicollinearity. In this paper, we
concentrated on the extra sum of squares method as a suggested method that can be used
for detecting multicollinearity. The method of extra sum of squares is applied to real data
on the annually surveys about smoking were conducted by the American Federal Trade
Commission (FTC). In this data, we detected multicollinearity, then we solved this problem
by using the ridge regression and we got the new estimates of the new model without
omitting any of the explanatory variables.

Keywords: Multicollinearity , Ridge regression, Ordinary least square.
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Introduction

Data with multicollinearity frequently arise and cause problems in
many applications of linear regression such as in econometrics,
oceanography, geophysics and other fields that rely on no experimental
data. Multicollinearity is a natural flaw in the data set due to the
uncontrollable operations of the data generating mechanism. In multiple
linear regressions two or more of independent variables used in the model,
the multicollinearity word has been used to represent a near exact
relationship between two or more variables. Thomas P. Rayan (2009). In
estimating the parameters in the regression model, it is often stated that
multicollinearity can cause the signs of the parameter estimator to be wrong.
The presence of multicollinearity will also mislead with the significance test
telling us that some important variables are not needed in the model;
multicollinearity causes a reduction of statistical power in the ability of
statistical tests. Neter (1989) said that in the process of fitting regression
model, when one independent variable is nearly combination of other
independent variables, the combination would affect parameter estimates.
Multicollinearity is the extreme problem for regression models, because it
violates the assumptions of the model that is the explanatory variables
should be independent. Belsley (1980) stated that, in case of existing of
multicolliearity, it becomes difficult to infer the separate influence of such
explanatory variables on the response variable. Weismann & Helge&
Shalabh (2007) said that various diagnostic tools such as condition number,
singular value decomposition method, Belsley condition indices, variance
decomposition method, variance inflation factors, and Belsley's perturbation
analysis etc., have been suggested in the literature for the detection of
multicollinearity and identification of variables causing the linear
relationships. Therefore, detecting multicollinearity is very important in
regression analysis. The paper is organized as follows. Section 2 recalls the
technical background of multicollinearity. Section 3 the extra sum of
squares method Section 4 data analysis. Section 5 concludes.

1. Multicollinearity

Multicollinearity is defined as the existence of nearly linear
dependency among the independent variables. The presence of serious
multicollinearity would reduce the accuracy of the parameters estimate in a
linear regression model and affect the independency of the independent
variables of the regression model. Multicollinearity can cause serious
problem in estimation and prediction, increasing the variance of least
squares of the regression coefficients and tending to produce least squares
estimates that are too large in absolute value. Theoretically, we have two
types of multicollinearity; these types are partial multicollinearity and
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perfect multicollinearity or full multicollinearity. In addition,
multicollinearity has two cases: scalar case and matrix case.

Scalar case
Any population model looks like the below model:

Y=B,+BX +B,X,+...+B X, +e 2.1
Where
y: The dependent variable
B, : is the intercept
B,,B,,........ ,B : are the slopes of coefficients for their respective

explanatory variables.
X,,X,,....., X, :are the explanatory variables.
e :is the random error term.
Note: with absent of multicollinearity then Y is a linear function of the
explanatory variables and a random error term.
If we suppose that, we have just only two explanatory variables
X,,X, and X, is amultiple of X, then X, =dX, for simplicity.
The regression would need to find the coefficient estimates b,,b, that

n

produce the best Y.
Then Y =b, +b, X, +b,X, , we can substitute X, by dX, as:
Y =b, +b X, +b,(dX,)
Y =b, + X, (b, +db,) (2.2)
The above result is true also for infinite number of coefficient pairs;

also these pairs produce the same value of Y .
Any small change in b, from one possible value to another (db,)is

matched by corresponding change inb, .
By compensation, we get the below result:

g, =
d

by repeating all the coefficient pairs and keeping the
linearity we can minimize sum of square errors [Y — Y.
Mathematically, the standard errors for coefficients §; equals:

S (¥ -9y’
S. = !
B DX AR SRS

n: is the numbers of predictors.
X, : is the mean of x,

where
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R_f: is the square of the multiple correlation coefficients that result when the
predictor variable X ;is regressed against the other entire predictor

variable.
k : is the number of explanatory variables.
At full multicollinearity R*=1, then (1- Rf) =0

Therefore S is undefined, then there is no linear regression.

Matrix case
In a matrix case the explanatory variable X can be take the following

form:

D X12 X13 X 1k E
a Xy Xp Xy C
X =0 L
O C
K C
B XnZ Xn3 Xnk E
Where:

n: number of observations

k: number of explanatory variables.

The first column is intercept or constant.
Matrix linear model is:

J
Y =B, + Z X!B, +e (2.3)

1=1
R j
Y =b,+$ X},
2

Where Y is a vectorn X1.

The coefficient b can be calculated as:

X"Xb=X"Y

O b=X"X)"X"Y
At multicollinearity the determinant of (X’ X)is equal zero, therefore the
inverse will not existing.

Detection of multicollinearity
Multicollinearity can be detected by examining one of two qualities:
Variance Inflation Factor "VIF" and Tolerance.
We can detect the multicollinearity by examining a quality called
Variance Inflation Factor (VIF).
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- = di Ayl = .
VIF, = =diag(X"X)", j =1, , p where:

2
Y

R?: is the square of the multiple correlation coefficients that result when the
predictor variable X ;is regressed against the other entire predictor

variables.
p : 1s the number of predictor variables.
X: in matrix case
At multicollinearity R* would be closed to 1 then VIF ; would be large,

When VIF, greater than 10 , the data have collinearity problems.

And we can detect the multicollinearity by examining a quality called
. 1 .
Tolerance which equals VIF = (1-R, )*, and the tolerance in

multicollinearity should be small.
Also, we can detect multicollinearity by using extra sum of squares
method.

2. Extra Sum of squares method for detecting multicollinearity

We can define the extra sums of squares as the marginal increase in
regression sum of squares when one or more independent variables are
added to a regression model. In general, we use extra sums of squares to
determine whether specific variables are making substantial contributions to
our model. Extra sums of squares provides a means of formally testing
whether one set of predictors is necessary given that another set is already
in the model. In regression analysis, we can use hypothesis test to check the
significance of the fitted model. Analysis of variance gives the information
on regression sum of squares (SSR), residual sum of squares (SSE), total
sum of squares (SST) and the F value for the hypothesis test. Regression
sum of squares account for the variation in y that is explained by the
variation of x;. In regression analysis, the regression sum of squares will
always increase while the residual sum of squares will decrease when a new
independent variable is added to the model, because the total sum of squares
unchanged. Decomposition of SSR into extra sum of squares In many
applications such as stepwise regression, additional sums of squares are
needed to measure the variation of y on some independent variables when a
certain set of independent variables are already in the model. Here, we use
SSR(xi | xj, xk) to represent the additional sum of squares which account for

the variation in y when x; is added in the model that already contains
independent variables x; and xx. The SSR (xi| Xj, Xx) can be calculated as:

SSR (x | Xj, Xk) =SSR (X;,Xj,Xx) — SSR (X;,Xk) (3.1
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If we have a linear regression model is constructed based on p
independent variables x;.x»,....,x, and if multicollinearity among the
Iegressors X, X, ..., xp does not exist. However, at least one of the

equality statements below does not hold if the regressors Xp Xy ooy X are

correlated.

SSR (xi| xj) = SSR (xi), 1,j O {1, 2,..., p}, i #] (3.2)

SSR (xi| xj, xk) = SSR (xi), i, j, k O {1, 2,...,p}, i #j #k (3.3)

SSR (xi | xj, xk, xm) = SSR (xi), 1, j, k, m O{1, 2,...,p},i#j#k#m (3.4)
SSR (xi| xj, xk, xm,...) =SSR (xi), i, j, k, m,... O{1,2,...,p},i#j #... (3.5)

Chin (2006).

Here, the independent variables are (p — 1), equation (3.5) represents the
additional sum of squares accounted for the variation in y when x; is added
in a model that already contains p-1 independent variables.

Uses of extra sum of squares

One of the major uses of extra sum of squares is for conducting tests
concerning regression coefficients without fitting both of the full and
reduced models separately. For example if we have MLR model with two
independent variables and we want to test whether or not B, = 0, here
actually we don't need to fit the reduced model since the partial F test
statistic can be calculated immediately from the relation below:

_SSR(X,/X)) .SSE(X,X,)
1 n-3

FEI

Also, we can use the extra sum of squares to measure the coefficient of
partial determination between y and any independent variable in the MLR
model, for example if we have a model with two independent variables, we
have the following: SSE(X;) measures the variation in Y when X2 is
included in the model, SSE(X;,X;) measures the variation in Y when X
and X, are included in the model. The relative marginal reduction in the
variation in Y associated with X; when X; is already in the model is:

SSE(X,)-SSE(X ,X,)
SSE(X )
This measure is the coefficient of partial determination between Y and
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X given that X; is in the model. We can denote this measure by 2
y1.2

2
Fyia = SSE(X)-SSE(XX,.X,) _, _SSE(X,.X,)

SSE (X ,) SSE (X ,)

We can express the coefficient of partial determination by extra sum of
squares by:
2 _SSR(X,/X,)
Y2 SSE(X )

3. Data analysis

In this section, we will conduct an application using real data and try to
detect multicollinearity by using sum of squares method. The data is from
the American Federal Trade Commission (FTC), which annually ranks
varieties domestic cigarettes according to their tar, nicotine, and carbon
monoxide contents. The U.S. surgeon general considers each of these three
substances hazardous to a smoker's health. Past studies have shown that
increases in the tar and nicotine contents of a cigarette are accompanied by
an increase in the carbon monoxide emitted from the cigarette smoke. Table
(4.1) lists tar, nicotine, and carbon monoxide contents (in milligrams) and
weight (in grams) for a sample of 25 (filter) brands tested in recent years.

Table (4.1) FTC Cigarette Data

BRAND hﬁ)ﬁ’;‘&e TAR Nicotine Weight
) (x1) (x2) (x3)

Alpine 13.6 14.1 .86 0.9853
Benson &Hedges 16.6 16 1.06 1.0938
Bull Durham 23.5 29.8 2.03 1.1650
Camel Lights 10.2 8 0.67 0.9280
Carlton 5.4 4.1 0.40 0.9462
Chesterfield 15 15 1.04 0.8885
Golden Lights 9 8.8 0.76 1.0267
Kent 12.3 12.4 0.95 0.9225
Kool 16.3 16.6 1.12 0.9372
L&M 15.4 14.9 1.02 0.8858
Lark Lights 13.0 13.7 1.01 0.9643
Marlboro 14.4 15.1 0.90 0.9316
Merit 10 7.8 0.57 0.9705
Multifilter 10.2 11.4 0.78 1.1240
Newport Lights 9.5 9 0.74 0.8517
Now 1.5 1 0.13 0.7851
Old Gold 18.5 17 1.26 0.9186
Pall Mall Lights 12.6 12.8 1.08 1.0395
Raleigh 17.5 15.8 0.96 0.9573
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Carbon e . .
BRAND Monoxide TAR Nicotine Weight
) (x1) (x2) (x3)
Salem Ultra 4.9 4.5 0.42 0.9106
Tareyton 159 14.5 1.01 1.0070
True 8.5 7.3 0.61 0.9806
Viceroy Rich Lights 10.6 8.6 0.69 0.9693
Virginia Slims 13.9 15.2 1.02 0.9496
Winston Lights 14.9 12 0.82 1.1184

Here, we need to model carbon monoxide content, y, as a function of tar

content, x;, nicotine, x,, and weight, x3, using the linear model

E(y) = Po + Bix; + Boxz + PBsxs

We used SPSS (Statistical Package for Social Sciences) program to
analyze the data as the following:

Table (4.2) Correlations

cathon
monoxide | Weight | Micotine 22| Tar =l
7, mulligram x3 grams| milligrams | milligrams
catbon monoxide Pearson Correlation 1 AE4H Rl S5
v, milligrams Sig (2-tailed) 019 000 000
Weight =3 grams  Pearson Correlation ke 1 5009 49
Sig (2-tailed) 018 011 013
Micotine 2 milligrar®earson Correlation 9264 S00M 1 ST
Sig. (2-tailed) 000 011 000
Tar xl milligrams Fearson Correlation e 491 AT 1
Sig (2-tailed) 000 013 000

* Correlation iz significant at the 0.05 level (2-tailed).

** Correlation is significant at the 001 level (2-tailed).

a. Listwise =25

From table (4.2), we can conclude that all the correlation coefficients are

significant at (0.05) significance level.
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Table (4.3) model summary

R Adjust Er?':)(::of
Model R Squa | edR the Change Statistics
re Square Estimate
R F
Square | Chang df1 df2 | Sig. F Change
Change e
1 958(a) | 919 .907 1.44573 919 78.98 3 21 .000
a Predictors: (Constant), Tar x; milligrams, Weight x5 grams,

Nicotine x, milligrams
From table (4.3), we can see that the coefficient of determination is
0.919; therefore, about 91.9% of the variation in the Carbon Monoxide

in cigarettes is explained by Tar, Nicotine, and Weight. The regression

equation appears to be very useful for making predictions since the value

of R? is close to 1, but may be this indicator indicates that
multicollinearity problem is exist.

Table (4.4) ANOVA table®

Model s(‘l‘lf;r‘;t; df sl\(;[s::-le F Sig.
Regression | 495.258 3 165.086 78.984 .000®
Residual 43.893 21 2.090
Total 539.150 24

Predictors: (Constant), Tar x1 milligrams, Weight x3 grams, Nicotine
x2 milligrams b Dependent variable: carbon monoxide y, milligrams
Since p-value < 0.01, so at the o = 0.05 level of significance, there
exists enough evidence to conclude that at least one of the predictors is
useful for predicting the Carbon Monoxide; therefore the model is useful.




A Suggested Method of Detecting ... [16]
Table (4.5) Coefficients (t) test
Unstandardized Standardized .
Model Coefficients Coefficients t Sig.
B Std. Error Beta
1 (Constant) 3.200 3.461 924 .366
Weight x; grams -.128 3.885 -.002 -.033 974
Nicotine x, 2.632 3.901 -.197 -675 507
milligrams
Tar x; milligrams .963 242 1.151 3.974 .001

a Dependent Variable: carbon monoxide y, milligrams

From table (4.5), the model will be as:

Carbon monoxide(y) = 3.2 - 0.128weight(x;) — 2.632nicotine(x;) +0.963tar(xz)
and we can conclude that the slope of the Tar variable is not zero since
p-value < 0.001and, hence, that Tar is useful (with Nicotine and Weight)
as a predictor of Carbon Monoxide.
But the both slopes of Weight and the Nicotine are equal to zero.
This means that there something is not normal in our analysis, so we
should test for the multicollinearity.

Table (4.6) multicollinearity diagnosing

Model Unstandardized | Standardized ¢ Si Collinearity
Coefficients Coefficients g Statistics
B Std. Beta
Error Tolerance VIF
1 (Constant) | 3.200 3.461 924 | 366
Weight x3 | )¢ 3.885 -.002 -033 | 974 750 1.334
grams
Nicotinex2 | » ¢35 | 390 -197 -675 | 507 046 21.900
milligrams
Tar x1 963 242 1.151 3.974 | .001 046 21.631
milligrams

variance inflation factor

From table (4.6), since the two predictors, Nicotine and Tar have a

multicollinearity problems in the model.

(VIF) greater than ten, there are apparent
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2000 =
1.500 ==
Nicotine x»

1.000 =

0.500 =

L]
10.00

L]
20.00

Tar x1 milligrams

Fig(4.1)
Relation between tar and nicotine

]
30.00

2.030

Also, from figure (4.1), we can conclude that there is aproximately
which indicates to

quadratic relation between

multicollinearity problem.

tar and nicotine,

Table (4.7) Coefficient Correlations @

Weight x; | Nicotine  x, | Tar X1
grams milligrams milligrams
Weight x; grams Pearson Correlation 1 .500(%) A491(%)
Sig. (2-tailed) 011 .013
N 25 25 25
Nl.cqtme X2 Pearson Correlation .500(%) 1 O9T7(¥%)
milligrams
Sig. (2-tailed) 011 .000
N 25 25 25
Tar x; milligrams Pearson Correlation A491(%) O77(*%) 1
Sig. (2-tailed) .013 .000
N 25 25 25

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

From table (4.7), we can see that tar content x; and nicotine content x;
appear to be highly correlated (r = 0.977), whereas weight x; appears to be
moderately correlated with both tar content (r = 0.491) and nicotine content
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(r = 0.500). In fact, all three-sample correlations are significantly different

from zero based on the small p-values as shown in table (4.7).
Now, we will rerun the analysis of the model systematically to get at

extra sum of squares SSR(X»/X;) and SSR(X;/X,, X3) by depending on

SSE.

We run the analysis with one independent variable.

Table (4.8) ANOVA y/x;
Model Sum of df Mean Square F Sig.
Squares
1 Regression 494.281 1 494.281 253.370 .000®
Residual 44.869 23 1.951
Total 539.150 24

a Predictors: (Constant), Tar x; milligrams
b Dependent Variable: carbon monoxide y, milligrams

From table (4.8) we get SSE(x,) = 44.869, then we run the analysis with

two independent variables, the result shown in table (4.9)

Table (4.9) ANOVA y/xy, X»

Model Sum of df Mean Square F Sig.
Squares
1 Regression 495.255 2 247.628 124.110 .000®
Residual 43.895 22 1.995
Total 539.150 24

a Predictors: (Constant), Nicotine x, milligrams, Tar x; milligrams
b Dependent Variable: carbon monoxide y, milligrams

From table (4.9), we get SSE(x;,X,) = 43.895 and
SSR(x2/x1) = SSE(x;) - SSE(x1,X2) = 44.869 — 43.895 = 0.974
Now we can find SSR(x/x,) from table (4.10)

Table (4.10) ANOVA y/x,
Model SS(;‘;‘;&E df sl\:s::e F Sig.
1 Regression 462.256 1 462.256 138.266 .000®
Residual 76.894 23 3.343
Total 539.150 24

a Predictors: (Constant), Nicotine X, milligrams

b Dependent Variable: carbon monoxide y, milligrams
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SSR(x/x2) = SSE(x2) — SSE(x1,X2)
= 76.894 — 43.895 = 32.999

Table (4.11) sum of squares

SSR SSE
SSR(x ) = 494.281 SSE(x ) = 44.869
SSR(x ) = 462.256 SSE(x ) = 76.894
SSR(x .x ) = 495.255 SSE(x,.x ) = 43.895

SSR(x] | xz) =32.999 # SSR(XI)

SSR(x | x ) =0.974 #SSR(x )

Therefore, by the extra sum of squares, we can conclude from the table
(4.11) that there is a severe multicollinearity problem in the model, and we
cannot omit any independent variable from the model because logically
there is very strong relation between the three independent variables in the
model.

So the question, which appears here, is how can we solve this problem?
One of the remedial methods of multicollinearity is a ridge regression,
which first introduced by Hoerl and Kennard (1970), it is one of the most
popular methods that have been suggested for the multicollinearity problem.
This regression enables us to inference on values of predictor variables that
follow the same pattern of multicollinearity and this aspect is very
important.

Solving multicollinearity by ridge regression
By using R program, we got the following:
C Bo Bi B2 B3
0.070 3.106198 -0.1283334 -1.676919 0.9017659
modified HKB estimator is 0.07112338
The program reached to this result after 70 iterations, and the model was:

Carbon monoxide(y) = 3.106198 - 0.1283334weight(x;) — 1.676919nicotine(x;)
+0.9017659tar(x3)

To make sure of these results, we plot these results as follows:
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Fig (4.2) coefficients plot

We see from figure (4.2), that the modified value was approximately
0.07.

Therefore, by using ridge regression, we got the best model for the data
without omitting any of the explanatory variables.

4. Conclusion

In this paper, we concentrated on the extra sum of squares method as a
suggested method that can be used for detecting multicollinearity. The
method of extra sum of squares is applied to real data on the annually
surveys about smoking were conducted by the American Federal Trade
Commission (FTC). In this data, we detected multicollinearity, then we
solved this problem by using the ridge regression and we got the new
estimates of the new model without omitting any of the explanatory
variables.
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